Genetics revolution
Base editing is an advance on a form of gene-editing known as Crispr, that is already revolutionising science.
Crispr breaks DNA. When the body tries to repair the break, it deactivates a set of instructions called a gene. It is also an opportunity to insert new genetic information.
Base editing works on the DNA bases themselves to convert one into another.
Prof David Liu, who pioneered base editing at Harvard University, describes the approach as “chemical surgery”.
He says the technique is more efficient and has fewer unwanted side-effects than Crispr.
He told the BBC: “About two-thirds of known human genetic variants associated with disease are point mutations.
“So base editing has the potential to directly correct, or reproduce for research purposes, many pathogenic [mutations].”
The research group at Sun Yat-sen University in Guangzhou hit the headlines before when they were the first to use Crispr on human embryos.
Prof Robin Lovell-Badge, from the Francis Crick Institute in London, described parts of their latest study as “ingenious”.
But he also questioned why they did not do more animal research before jumping to human embryos and said the rules on embryo research in other countries would have been “more exacting”.
The study, published in Protein and Cell, is the latest example of the rapidly growing ability of scientists to manipulate human DNA.
It is provoking deep ethical and societal debate about what is and is not acceptable in efforts to prevent disease.
Prof Lovell-Badge said these approaches are unlikely to be used clinically anytime soon.
“There would need to be far more debate, covering the ethics, and how these approaches should be regulated.
“And in many countries, including China, there needs to be more robust mechanisms established for regulation, oversight, and long-term follow-up.”
****
Source: BBC