Wednesday , January 22 2025
Home / In The Magazine / Fighting the next pandemic

Fighting the next pandemic

Other types of pollution and hospital waste

Industrial wastes, hospitals, farms, and agriculture are also possible sources or drivers of antibiotic resistance.

In fact, pollution of almost any sort can promote antibiotic resistance, including metals, biocides, pesticides, and other chemicals entering the environment.  So reducing pollution in general will help reduce antibiotic resistance.

Hospitals are also important, being both reservoirs and incubators for many varieties of antibiotic resistance, including well known resistant bacteria such as Vancomycin-resistant Enterococcus (VRE) and Methicillin-resistant Staphylococcus aureus (MRSA). While resistant bacteria are not necessarily acquired in hospitals (most are brought in from the community), resistant bacteria can be enriched in hospitals because they are where people are very sick, cared for in close proximity, and often provided “last resort” antibiotics. Such conditions allow the spread of resistant bacteria easier, especially superbug strains because of the types of antibiotics that are used.

Wastewater releases from hospitals also may be a concern. Recent data showed that “typical” bacteria in hospital sewage carry five to ten times more resistant genes per cell than community sources, especially genes more readily shared between bacteria. This is problematic because such bacteria are sometimes superbug strains, such as those resistant to carbapenem antibiotics. Hospital wastes are a particular concern in places without effective community wastewater treatment.

Another critical source of antibiotic resistance is agriculture and aquaculture. Drugs used in veterinary care can be very similar (sometimes identical) to the antibiotics used in human medicine. And so resistant bacteria and genes are found in animal manure, soils, and drainage water.

Finally, antibiotic resistance can spread from farm animals to farmers to food workers, which has been seen in recent European studies, meaning this can be important at local scales.

These examples show that pollution in general increases the spread of resistance. But the examples also show that dominant drivers will differ based on where you are. So locally driven national action plans are therefore essential – which the new WHO/FAO/OIE guidance strongly recommends. In some places, actions might focus on healthcare systems; whereas, in many places, promoting cleaner water and safer food also is critical.

Simple steps

It is clear we must use a holistic approach (what is now called “One Health”) to reduce the spread of resistance across people, animals, and the environment. But how do we do this in a world that is so unequal? It is now accepted that clean water is a human right embedded in the UN’s 2030 Agenda for Sustainable Development. But how can we achieve affordable “clean water for all” in a world where geopolitics often outweighs local needs and realities?

Global improvements in sanitation and hygiene should bring the world closer to solving the problem of antibiotic resistance. But such improvements should only be the start. Once improved sanitation and hygiene exist at global scales, our reliance on antibiotics will decline due to more equitable access to clean water. In theory, clean water coupled with decreased use of antibiotics will drive a downward spiral in resistance.

This is not impossible. We know of a village in Kenya where they simply moved their water supply up a small hill – above rather than near their latrines. Hand washing with soap and water was also mandated. A year later, antibiotic use in the village was negligible because so few villagers were unwell. This success is partly due to the remote location of the village and very proactive villagers. But it shows that clean water and improved hygiene can directly translate into reduced antibiotic use and resistance.

This story from Kenya further shows how simple actions can be a critical first step in reducing global resistance. But such actions must be done everywhere and at multiple levels to solve the global problem. This is not cost-free and requires international cooperation – including focused apolitical policy, planning, and infrastructure and management practices.

Simple is more sustainable. As an obvious example, we need to reduce open defecation in a cheap and socially acceptable manner. This is the best immediate solution in places with limited or unused sanitation infrastructure.. Innovation is without doubt important, but it needs to be tailored to local realities to stand a chance of being sustained into the future.

Strong leadership and governance is also critical. Antibiotic resistance is much lower in places with less corruption and strong governance. Resistance also is lower in places with greater public health expenditure, which implies social policy, community action, and local leadership can be as important as technical infrastructure.

Why aren’t we solving the problem?

While solutions to antibiotic resistance exist, integrated cooperation between science and engineering, medicine, social action, and governance is lacking. While many international organisations acknowledge the scale of the problem, unified global action is not happening fast enough.

There are various reasons for this. Researchers in healthcare, the sciences, and engineering are rarely on the same page, and experts often disagree over what should be prioritised to prevent antibiotic resistance – this muddles guidance. Unfortunately, many antibiotic resistance researchers also sometimes sensationalise their results, only reporting bad news or exaggerating results.

Science continues to reveal probable causes of antibiotic resistance, which shows no single factor drives resistance evolution and spread. As such, a strategy incorporating medicine, environment, sanitation, and public health is needed to provide the best solutions. Governments throughout the world must act in unison to meet targets for sanitation and hygiene in accordance with the UN Sustainable Development Goals.

Regardless of context, improved water, sanitation, and hygiene must be the backbone of stemming the spread of AMR, including antibiotic resistance, to avoid the next pandemic. Some progress is being made in terms of global cooperation, but efforts are still too fragmented. Some countries are making progress, whereas others are not.

****

David W Graham is Professor of Ecosystems Engineering, Newcastle University and Peter Collignon is Professor of Infectious Diseases and Microbiology, Australian National University

Source: thecoversation

Loading...

Leave a Reply

Your email address will not be published. Required fields are marked *